Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.898
Filtrar
1.
Toxicol Lett ; 395: 40-49, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555059

RESUMO

Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3ß-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3ß-HSD1, with an IC50 value of 29.83 µM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 µM, while chloranil markedly reduced progesterone production at ≥1 µM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3ß-HSD4, with IC50 values of 27.94 and 23.42 µM, respectively. Dithiothreitol (DTT) alone significantly increased human 3ß-HSD1 activity. Chloranil not PCP mediated inhibition of human 3ß-HSD1 activity was completely reversed by DTT and that of rat 3ß-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3ß-HSDs. The difference in the amino acid residue Cys83 in human 3ß-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3ß-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3ß-HSD1.


Assuntos
Pentaclorofenol , Placenta , Humanos , Feminino , Ratos , Gravidez , Animais , Placenta/metabolismo , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Cloranila/metabolismo , Progesterona/metabolismo , Ativação Metabólica , Modelos Moleculares , Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases
2.
Eur J Med Chem ; 268: 116193, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364714

RESUMO

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 µM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias da Próstata/tratamento farmacológico , 3-Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
J Steroid Biochem Mol Biol ; 236: 106424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939739

RESUMO

Bisphenol A (BPA) is a widely used plastic material and its potential endocrine disrupting effect has restricted its use and increasing use of BPA alternatives has raised health concerns. However, the effect of bisphenol alternatives on steroidogenesis remains unclear. The objective of this study was to compare inhibitory potencies of 10 BPA alternatives in the inhibition of gonadal 3ß-hydroxysteroid dehydrogenase (3ß-HSD) in three species (human, rat and mouse). The inhibitory potency for human 3ß-HSD2, rat 3ß-HSD1, and mouse 3ß-HSD6 ranged from bisphenol FL (IC50, 3.32 µM for human, 5.19 µM for rat, and 3.26 µM for mouse) to bisphenol E, F, and thiodiphenol (ineffective at 100 µM). Most BPA alternatives were mixed inhibitors of gonadal 3ß-HSD and they dose-dependently inhibited progesterone formation in KGN cells. Molecular docking analysis showed that all BPA analogs bind to steroid and NAD+ active sites. Lipophilicity of BPA alternatives was inversely correlated with IC50 values. In conclusion, BPA alternatives mostly can inhibit gonadal 3ß-HSDs and lipophilicity determines their inhibitory strength.


Assuntos
Compostos Benzidrílicos , Hidroxiesteroide Desidrogenases , Fenóis , Testículo , Ratos , Humanos , Camundongos , Animais , Masculino , Simulação de Acoplamento Molecular , Testículo/metabolismo , Relação Estrutura-Atividade , Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo
4.
J Steroid Biochem Mol Biol ; 238: 106450, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38143010

RESUMO

The potential inhibitory effects of flavonoids on gonadal steroid biosynthesis have gained attention due to their widespread presence in natural plant sources. Specifically, our study focused on evaluating the inhibitory efficacy of these compounds on human 3ß-hydroxysteroid dehydrogenase 2 (h3ß-HSD2) and rat homolog r3ß-HSD1, enzymes responsible for the conversion of pregnenolone to progesterone. Through our investigations, we observed that the potency of flavonoids was silymarin (IC50, 1.31 µM) > luteolin (4.63 µM) > tectorigenin > (5.86 µM), and rutin (44.12 µM) in inhibiting human KGN cell microsomal h3ß-HSD2. Similarly, the potency of flavonoids was silymarin (9.50 µM) > luteolin (11.49 µM) > tectorigenin (14.06 µM), and rutin (145.71 µM) in inhibiting rat testicular r3ß-HSD1. Silymarin, luteolin, and tectorigenin acted as mixed inhibitors of both human and rat 3ß-HSDs. Luteolin and tectorigenin were able to penetrate human KGN cells to inhibit progesterone secretion. Furthermore, docking analysis and structure-activity relationship analysis highlighted the importance of hydrogen bond formation for the inhibitory efficacy of these compounds against h3ß-HSD2 and r3ß-HSD1. Overall, this study demonstrates that silymarin exhibits the most potent inhibition of human and rat gonadal 3ß-HSDs, and significant SAR differences exist among the tested compounds.


Assuntos
Flavonoides , Silimarina , Humanos , Ratos , Animais , Flavonoides/farmacologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , Progesterona , Luteolina/farmacologia , Relação Estrutura-Atividade , Rutina/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases
5.
Chem Biol Interact ; 388: 110840, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122923

RESUMO

Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17ß-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Masculino , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Androgênios/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina , Hidroxiprostaglandina Desidrogenases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Resistencia a Medicamentos Antineoplásicos/genética
6.
Toxicol Lett ; 389: 45-58, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871704

RESUMO

Perfluoroalkylated carboxylic acids (PFCAs) are a subclass of man-made chemicals that have been widely used in industrial production and consumer products. As a result, PFCAs have been found to accumulate in the environment and bioaccumulate in organisms, leading to potential health and environmental impacts. This study investigated the inhibition of 11 PFCAs on gonadal 3ß-hydroxysteroid dehydrogenases in humans, rats, and mice. We observed a V-shaped inhibition pattern against human granulosa (KGN) cell 3ß-HSD2 starting from C9 (half-maximal inhibitory concentration, IC50, 100.8 µM) to C11 (8.92 µM), with a V-shaped turn. The same V-shaped inhibition pattern was also observed for PFCAs against rat testicular 3ß-HSD1 from C9 (IC50, 50.43 µM) to C11 (6.60 µM). Mouse gonadal 3ß-HSD6 was insensitive to the inhibition of PFCAs, with an IC50 of 50.43 µM for C11. All of these PFCAs were mixed inhibitors of gonadal 3ß-HSDs. Docking analysis showed that PFCAs bind to the nicotinamide adenine dinucleotide (NAD+)/steroid binding sites of these enzymes and bivariate correlation analysis showed that molecular length determines the inhibitory pattern of PFCAs on these enzymes. In conclusion, the carbon chain length determines the inhibitory strength of PFCAs on human, rat, and mouse gonadal 3ß-HSDs, and the inhibitory strength of PFCAs against human and rat 3ß-HSD enzymes shows V-shaped turn.


Assuntos
17-Hidroxiesteroide Desidrogenases , 3-Hidroxiesteroide Desidrogenases , Humanos , Ratos , Camundongos , Animais , Masculino , 3-Hidroxiesteroide Desidrogenases/metabolismo , Testículo/metabolismo , Gônadas , Sítios de Ligação , Ácidos Carboxílicos/toxicidade
7.
Food Chem Toxicol ; 180: 114028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703925

RESUMO

Azole fungicides are widely used in the agricultural industry to control fungal infections in crops. However, recent studies have shown that some azole fungicides inhibit the activity of 3ß-hydroxysteroid dehydrogenases (3ß-HSDs) in the gonads. Out of the 16 azole fungicides tested, 8 were found to inhibit human KGN cell 3ß-HSD2 with IC50 values of less than 100 µM. The strongest inhibitor was difenoconazole, with an IC50 value of 1.88 µM. In contrast, only 3 of the azole fungicides inhibited rat testicular 3ß-HSD1, which was less sensitive to inhibition. Azole fungicides potently inhibited progesterone secretion by KGN cells under basal and forskolin stimulated conditions at ≥ 5 µM. The inhibitory strength of azole fungicides was determined by their lipophilicity (LogP), molecular weight, pKa, and binding energy. A pharmacophore analysis revealed that the hydrogen bond acceptor-lipid group was a critical feature required for inhibition. Overall, these findings suggest that the use of azole fungicides have unintended consequences on reproductive health due to their inhibition of gonadal 3ß-HSDs. Key words: Azole fungicides; steroid hormones; 3ß-hydroxysteroid dehydrogenase; docking analysis; lipophilicity.


Assuntos
Fungicidas Industriais , Humanos , Ratos , Animais , Fungicidas Industriais/toxicidade , Azóis/farmacologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , Relação Estrutura-Atividade , Esteroides/metabolismo
8.
Theriogenology ; 209: 170-177, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393747

RESUMO

As a functional fatty acid, α-linolenic acid (ALA) is essential in promoting animal testosterone biosynthesis. This study investigated the effects of ALA on testosterone biosynthesis and the possible mechanism underlying the signaling pathway in primary Leydig cells of the rooster. METHODS: Primary rooster Leydig cells were treated with ALA (0, 20, 40, or 80 µmol/L) or pretreated with a p38 inhibitor (50 µmol/L), a c-Jun NH2-terminal kinase (JNK) inhibitor (20 µmol/L), or an extracellular signal-regulated kinase (ERK) inhibitor (20 µmol/L) before ALA treatment. Testosterone content in the conditioned culture medium was detected using an enzyme-linked immunosorbent assay (ELISA). The expression of steroidogenic enzymes and JNK-SF-1 signaling pathway factors was detected using real-time fluorescence quantitative PCR (qRT-PCR). RESULTS: Supplementation with ALA significantly increased testosterone secretion within culture media (P < 0.05), and the optimized dose was 40 µmol/L. Compared with the control group, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA expression significantly increased (P < 0.05) in the 40 µmol/L ALA group; 17-hydroxylase/c17-20 lyase (P450c17) and p38 mRNA expressions were not significantly different in the 40 µmol/L ALA group; ERK and JNK mRNA expressions were significantly upregulated (P < 0.05) in 40 µmol/L ALA group. In the inhibitor group, testosterone levels were significantly downregulated (P < 0.05). Compared with the 40 µmol/L ALA group, StAR, P450scc, and P450c17 mRNA expressions were significantly decreased (P < 0.05), and 3ß-HSD mRNA expression in the p38 inhibitor group did not change; StAR, P450scc, and 3ß-HSD mRNA expressions were significantly decreased (P < 0.05), and P450c17 mRNA expression in ERK inhibitor group did not change; StAR, P450scc, 3ß-HSD, and P450c17 mRNA expressions were significantly decreased (P < 0.05) in JNK inhibitor group. Additionally, the increased steroidogenic factor 1 (SF-1) gene expression levels induced by ALA were reversed when the cells were pre-incubated with JNK and ERK inhibitors. The levels in the JNK inhibitor group were significantly lower than those in the control group (P < 0.05). CONCLUSION: ALA may promote testosterone biosynthesis by activating the JNK-SF-1 signaling pathway to upregulate StAR, P450scc, 3ß-HSD, and P450c17 expression in primary rooster Leydig cells.


Assuntos
Células Intersticiais do Testículo , Ácido alfa-Linolênico , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/farmacologia , Ácido alfa-Linolênico/farmacologia , Galinhas/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , RNA Mensageiro/metabolismo , Testosterona/metabolismo , Transdução de Sinais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo
9.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175202

RESUMO

BACKGROUND AND OBJECTIVE: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-ß-hydroxydammar-3-one-20(S)-O-ß-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.


Assuntos
Ginsenosídeos , Humanos , Ginsenosídeos/química , Biotransformação , Glicosídeo Hidrolases/metabolismo , Fibroblastos/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , beta-Glucosidase/metabolismo
10.
J Ethnopharmacol ; 317: 116690, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37245711

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, licorice (the roots of Glycyrrhiza glabra and G. inflata) has been used to treat inflammation and sexual debility for over 1000 years. Pharmacological studies have identified many biologically active chalcone derivatives from licorice. AIM OF THE STUDY: Human 3ß-Hydroxysteroid dehydrogenase 2 (h3ß-HSD2) catalyzes the formation of precursors for sex hormones and corticosteroids, which play critical roles in reproduction and metabolism. We explored inhibition and mode action of chalcones of inhibiting h3ß-HSD2 and compared it with rat 3ß-HSD1. MATERIALS AND METHODS: We investigated the inhibition of 5 chalcones on h3ß-HSD2 and compared species-dependent difference with 3ß-HSD1. RESULTS: The inhibitory strength on h3ß-HSD2 was isoliquiritigenin (IC50, 0.391 µM) > licochalcone A (0.494 µM) > licochalcone B (1.485 µM) > echinatin (1.746 µM) >chalcone (100.3 µM). The inhibitory strength on r3ß-HSD1 was isoliquiritigenin (IC50, 0.829 µM) > licochalcone A (1.165 µM) > licochalcone B (1.866 µM) > echinatin (2.593 µM) > chalcone (101.2 µM). Docking showed that all chemicals bind steroid and/or NAD+-binding site with the mixed mode. Structure-activity relationship analysis showed that strength was correlated with chemical's hydrogen bond acceptor. CONCLUSION: Some chalcones are potent h3ß-HSD2 and r3ß-HSD1 inhibitors, possibly being potential drugs to treat Cushing's syndrome or polycystic ovarian syndrome.


Assuntos
Chalcona , Chalconas , Glycyrrhiza , Humanos , Ratos , Animais , Chalconas/farmacologia , Chalcona/farmacologia , Glycyrrhiza/química , Hidroxiesteroide Desidrogenases , 3-Hidroxiesteroide Desidrogenases/metabolismo
11.
Toxicol Lett ; 382: 47-57, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217011

RESUMO

Benzophenones (BPs) are a class of chemicals found in various personal care and cosmetic products, such as sunscreens and lotions. Their usage is known to cause reproductive and hormonal health risks, but the exact mechanism of action remains unknown. In this study, we investigated the effects of BPs on human and rat placental 3ß-hydroxysteroid dehydrogenases (3ß-HSDs), which play a crucial role in the biosynthesis of steroid hormones, particularly progesterone. We tested inhibitory effects of 12 BPs, and performed structure-activity relationship (SAR) and in silico docking analysis. The potency of BPs to inhibit human 3ß-HSD1 (h3ß-HSD1) is BP-1 (IC50, 8.37 µM)>BP-2 (9.06 µM)>BP-12 (94.24 µM)>BP-7 (1160 µM) >BP-8 (1257 µM) >BP-6 (1410 µM) > other BPs (ineffective at 100 µM). The potency of BPs on rat r3ß-HSD4 is BP-1 (IC50, 4.31 µM)>BP-2 (117.3 µM)>BP-6 (669 µM) >BP-3 (820 µM)>other BPs (ineffective at 100 µM). BP-1, BP-2, and BP-12 are mixed h3ß-HSD1 inhibitors and BP-1 is a mixed r3ß-HSD4 inhibitor. LogP, lowest binding energy, and molecular weight were positively associated with IC50 for h3ß-HSD1, while LogS was negatively associated with IC50. The 4-OH substitution in the benzene ring plays a key role in enhancing the effectiveness of inhibiting h3ß-HSD1 and r3ß-HSD4, possibly through increasing water solubility and decreasing lipophilicity by forming hydrogen bonds. BP-1 and BP-2 inhibited progesterone production in human JAr cells. Docking analysis shows that 2-OH of BP-1 forms hydrogen bonds with catalytic residue Ser125 of h3ß-HSD1 and Thr125 of r3ß-HSD4. In conclusion, this study demonstrates that BP-1 and BP-2 are moderate inhibitors of h3ß-HSD1 and BP-1 is a moderate inhibitor of r3ß-HSD4. There is a significant SAR differences for 3ß-HSD homologues between BPs and distinct species-dependent inhibition of placental 3ß-HSDs.


Assuntos
Placenta , Progesterona , Humanos , Feminino , Gravidez , Animais , Ratos , Placenta/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Benzofenonas/toxicidade
12.
J Endocrinol ; 258(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115241

RESUMO

Neuroactive steroids can rapidly regulate multiple physiological functions in the central and peripheral nervous systems. The aims of the present study were to determine whether allopregnanolone (ALLO), administered in low nanomolar and high micromolar concentrations, can: (i) induce changes in the ovarian progesterone (P4) and estradiol (E2) release; (ii) modify the ovarian mRNA expression of Hsd3b1 (3ß-hydroxysteroid dehydrogenase, 3ß-HSD)3ß-, Akr1c3 (20α-hydroxysteroid dehydrogenase, 20α-HSD), and Akr1c14 (3α-hydroxy steroid oxidoreductase, 3α-HSOR)); and (iii) modulate the ovarian expression of progesterone receptors A and B, α and ß estrogenic receptors, luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR). To further characterize ALLO peripheral actions, the effects were evaluated using a superior mesenteric ganglion-ovarian nervous plexus-ovary (SMG-ONP-O) and a denervated ovary (DO) systems. ALLO SMG administration increased P4 concentration in the incubation liquid by decreasing ovarian 20α-HSD mRNA, and it also increased ovarian 3α-HSOR mRNA expression. In addition, ALLO neural peripheral modulation induced an increase in the expression of ovarian LHR, PRA, PRB, and ERα. Direct ALLO administration to the DO decreased E2 and increased P4 concentration in the incubation liquid. The mRNA expression of 3ß-HSD decreased and 20α-HSD increased. Further, ALLO in the OD significantly changed ovarian FSHR and PRA expression. This is the first evidence of ALLO's direct effect on ovarian steroidogenesis. Our results provide important insights about how this neuroactive steroid interacts both with the PNS and the ovary, and these findings might help devise some of the pleiotropic effects of neuroactive steroids on female reproduction. Moreover, ALLO modulation of ovarian physiology might help uncover novel treatment approaches for reproductive diseases.


Assuntos
Neuroesteroides , Pregnanolona , Feminino , Humanos , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Ovário/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/farmacologia , RNA Mensageiro/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/farmacologia
13.
PeerJ ; 11: e15225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065701

RESUMO

Gypenosides (GP), extracted from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino, have been used to treat metabolic disorders, including lipid metabolism disorders and diabetes. Although recent studies have confirmed their beneficial effects in nonalcoholic fatty liver disease (NAFLD), the underlying therapeutic mechanism remains unclear. In this study, we explored the protective mechanism of GP against NAFLD in mice and provided new insights into the prevention and treatment of NAFLD. Male C57BL6/J mice were divided into three experimental groups: normal diet, high-fat diet (HFD), and GP groups. The mice were fed an HFD for 16 weeks to establish an NAFLD model and then treated with GP for 22 weeks. The transcriptome and proteome of the mice livers were profiled using RNA sequencing and high-resolution mass spectrometry, respectively. The results showed that GP decreased serum lipid levels, liver index, and liver fat accumulation in mice. Principal component and heatmap analyses indicated that GP significantly modulated the changes in the expression of genes associated with HFD-induced NAFLD. The 164 differentially expressed genes recovered using GP were enriched in fatty acid and steroid metabolism pathways. Further results showed that GP reduced fatty acid synthesis by downregulating the expression of Srebf1, Fasn, Acss2, Acly, Acaca, Fads1, and Elovl6; modulated glycerolipid metabolism by inducing the expression of Mgll; promoted fatty acid transportation and degradation by inducing the expression of Slc27a1, Cpt1a, and Ehhadh; and reduced hepatic cholesterol synthesis by downregulating the expression of Tm7sf2, Ebp, Sc5d, Lss, Fdft1, Cyp51, Nsdhl, Pmvk, Mvd, Fdps, and Dhcr7. The proteomic data further indicated that GP decreased the protein expression levels of ACACA, ACLY, ACSS2, TM7SF2, EBP, FDFT1, NSDHL, PMVK, MVD, FDPS, and DHCR7 and increased those of MGLL, SLC27A1, and EHHADH. In conclusion, GP can regulate the key genes involved in hepatic lipid metabolism in NAFLD mice, providing initial evidence for the mechanisms underlying the therapeutic effect of GP in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Gynostemma/metabolismo , Proteômica , Ácidos Graxos/uso terapêutico , 3-Hidroxiesteroide Desidrogenases/metabolismo
14.
Cell Metab ; 35(4): 685-694.e5, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933555

RESUMO

Estradiol decline can result in depressive disorders in females; nevertheless, the causes of this decline are unclear. In this study, we isolated estradiol-degrading Klebsiella aerogenes from the feces of premenopausal females with depression. In mice, gavaging with this strain led to estradiol decline and depression-like behaviors. The gene encoding the estradiol-degrading enzyme in K. aerogenes was identified as 3ß-hydroxysteroid dehydrogenase (3ß-HSD). Heterologously expressing 3ß-HSD resulted in Escherichia coli obtaining the ability to degrade estradiol. Gavaging mice with 3ß-HSD-expressing E. coli decreased their serum estradiol levels, causing depression-like behaviors. The prevalence of K. aerogene and 3ß-HSD was higher in premenopausal women with depression than in those without depression. These results suggest that the estradiol-degrading bacteria and 3ß-HSD enzymes are potential intervention targets for depression treatment in premenopausal women.


Assuntos
Depressão , Enterobacter aerogenes , Estradiol , Microbiota , Pré-Menopausa , Adulto , Animais , Feminino , Humanos , Camundongos , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Depressão/metabolismo , Depressão/microbiologia , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Escherichia coli/metabolismo , Fezes/microbiologia , Pré-Menopausa/metabolismo
15.
J Steroid Biochem Mol Biol ; 230: 106279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871834

RESUMO

Benzophenone (BP) ultraviolet (UV) -filters have been widely used to prevent adverse effects of UV. Whether they can disrupt gonadal steroidogenesis remains unclear. Gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD) catalyse the conversion of pregnenolone to progesterone. This study explored the effect of 12 BPs on human, rat, and mouse 3ß-HSD isoforms, and analysed the structure-activity relationship (SAR) and underlying mechanisms. The inhibitory potency was BP-1 (IC50, 5.66 ± 0.95 µM) > BP-2 (5.84 ± 2.22 µM) > BP-6 (185.8 ± 115.2 µM) > BP3-BP12 on human KGN 3ß-HSD2, BP-2 (5.90 ± 1.02 µM) > BP-1 (7.55 ± 1.26 µM) > BP3-B12 on rat testicular 3ß-HSD1, and BP-1 (15.04 ± 5.20 µM) > BP-2 (22.64 ± 11.81 µM) > BP-6(125.1 ± 34.65 µM)> BP-7 (161.1 ± 102.4 µM) > other BPs on mouse testicular 3ß-HSD6. BP-1 is a mixed inhibitor of human, rat, and mouse 3ß-HSDs, and BP-2 is a mixed inhibitor of human and rat 3ß-HSDs and a noncompetitive inhibitor of mouse 3ß-HSD6. 4-Hydroxyl substitution in the benzene ring plays a key role in enhancing potency of inhibiting human, rat, and mouse gonadal 3ß-HSDs. BP-1 and BP-2 can penetrate human KGN cells to inhibit progesterone secretion at ≥ 10 µM. Docking analysis revealed that the 4-hydroxyl group of BP-1 and BP-2 forms hydrogen bonds with residue Ser123 of human 3ß-HSD2 and residue Asp127 of rat 3ß-HSD1. In conclusion, this study demonstrates that BP-1 and BP-2 are the most potent inhibitors of human, rat, and mouse gonadal 3ß-HSDs and that there is a significant SAR difference.


Assuntos
3-Hidroxiesteroide Desidrogenases , Progesterona , Humanos , Ratos , Camundongos , Animais , Masculino , Progesterona/farmacologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Testículo/metabolismo , Gônadas/metabolismo , Relação Estrutura-Atividade
16.
Toxicol Lett ; 379: 76-86, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965607

RESUMO

3ß-Hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1 (3ß-HSD1) plays a critical role in the biosynthesis of progesterone from pregnenolone in the human placenta to maintain normal pregnancy. Whether they inhibit placental 3ß-HSD1 and mode of inhibition remains unclear. In this study, we screened 21 pesticides and fungicides in five classes to inhibit human 3ß-HSD1 and compared them to rat homolog 3ß-HSD4. 3ß-HSD activity was measured by catalyzing pregnenolone to progesterone in the presence of NAD+. Of the 21 chemicals, azoles (difenoconazole), thiocarbamates (thiram and ferbam) and organochlorine (hexachlorophene) significantly inhibited human 3ß-HSD1 with half maximal inhibitory concentration (IC50) values of 2.77, 0.24, 0.68, and 17.96 µM, respectively. We also found that difenoconazole, ferbam and hexachlorophene are mixed/competitive inhibitors of 3ß-HSD1 while thiram is a mixed/noncompetitive inhibitor. Docking analysis showed that difenoconazole and hexachlorophene bound steroid-binding site. Difenoconazole and hexachlorophene except thiram and ferbam also significantly inhibited rat 3ß-HSD4 activity with IC50 of 1.12 and 2.28 µM, respectively. Thiram and ferbam significantly inhibited human 3ß-HSD1 possibly by interfering with cysteine residues, while they had no effects on rat 3ß-HSD4. In conclusion, some pesticides potently inhibit placental 3ß-HSD, leading to the reduction of progesterone formation.


Assuntos
Fungicidas Industriais , Praguicidas , Humanos , Ratos , Feminino , Gravidez , Animais , Placenta/metabolismo , Fungicidas Industriais/toxicidade , Progesterona , 3-Hidroxiesteroide Desidrogenases/metabolismo , Praguicidas/toxicidade , Tiram , Hexaclorofeno , Esteroides , Pregnenolona/metabolismo
17.
Eur J Med Chem ; 247: 115013, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566714

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in multiple hormone related cancers, such as breast and prostate cancer, and is correlated with tumor development and aggressiveness. As a phase I biotransformation enzyme, AKR1C3 catalyzes the metabolic processes that lead to resistance to anthracyclines, the "gold standard" for breast cancer treatment. Novel approaches to restore the chemotherapy sensitivity of breast cancer are urgently required. Herein, we developed a new class of AKR1C3 inhibitors that demonstrated potent inhibitory activity and exquisite selectivity for closely related isoforms. The best derivative 27 (S19-1035) exhibits an IC50 value of 3.04 nM for AKR1C3 and >3289-fold selectivity over other isoforms. We determined the co-crystal structures of AKR1C3 with three of the inhibitors, providing a solid foundation for further structure-based drug optimization. Co-administration of these AKR1C3 inhibitors significantly reversed the doxorubicin (DOX) resistance in a resistant breast cancer cell line. Therefore, the novel AKR1C3 specific inhibitors developed in this work may serve as effective adjuvants to overcome DOX resistance in breast cancer treatment.


Assuntos
Neoplasias da Mama , Masculino , Humanos , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Hidroxiprostaglandina Desidrogenases/química , Hidroxiprostaglandina Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Antibióticos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
18.
J Ethnopharmacol ; 305: 116051, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36572324

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY: 3ß-Hydroxysteroid dehydrogenase (3ß-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3ß-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS: In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3ß-HSD1 activity and compared the species-dependent difference in human 3ß-HSD1 and rat placental homolog 3ß-HSD4. RESULTS: The inhibitory potency of curcuminoids on human 3ß-HSD1 was demethoxycurcumin (IC50, 0.18 µM) > bisdemethoxycurcumin (0.21 µM)>curcumin (2.41 µM)> dihydrocurcumin (4.13 µM)>tetrahydrocurcumin (15.78 µM)>octahydrocurcumin (ineffective at 100 µM). The inhibitory potency of curcuminoids on rat 3ß-HSD4 was bisdemethoxycurcumin (3.34 µM)>dihydrocurcumin (5.12 µM)>tetrahydrocurcumin (41.82 µM)>demethoxycurcumin (88.10 µM)>curcumin (137.06 µM)> octahydrocurcumin (ineffective at 100 µM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3ß-HSD. CONCLUSION: Some curcuminoids are potent human placental 3ß-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.


Assuntos
Curcumina , Animais , Feminino , Humanos , Gravidez , Ratos , 3-Hidroxiesteroide Desidrogenases/metabolismo , Curcuma/química , Curcumina/química , Diarileptanoides/farmacologia , Hidroxiesteroide Desidrogenases/metabolismo , Placenta/metabolismo , Relação Estrutura-Atividade
19.
Chem Res Toxicol ; 35(12): 2271-2284, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36440846

RESUMO

Matrine (MT) is a major bioactive compound extracted from Sophorae tonkinensis. However, the clinical application of MT is relatively restricted due to its potentially toxic effects, especially hepatotoxicity. Although MT-induced liver injury has been reported, little is known about the underlying molecular mechanisms. In this study, transcriptomics and metabolomics were applied to investigate the hepatotoxicity of MT in mice. The results indicated that liver injury occurred when the administration of MT (30 or 60 mg/kg, i.g) lasted for 2 weeks, including dramatically increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), etc. The metabolomic results revealed that steroid biosynthesis, purine metabolism, glutathione metabolism, and pyruvate metabolism were involved in the occurrence and development of MT-induced hepatotoxicity. Further, the transcriptomic data indicated that the downregulation of NSDHL with CYP51, FDFT1, and DHCR7, involved in steroid biosynthesis, resulted in a lower level of cholic acid. Besides, Gstps and Nat8f1 were related to the disorder of glutathione metabolism, and HMGCS1 could be treated as the marker gene of the development of MT-induced hepatotoxicity. In addition, other metabolites, such as taurine, flavin mononucleotide (FMN), and inosine monophosphate (IMP), also made a contribution to the boosting of MT-induced hepatotoxicity. In this work, our results provide clues for the mechanism investigation of MT-induced hepatotoxicity, and several biomarkers (metabolites and genes) closely related to the liver injury caused by MT are also provided. Meanwhile, new insights into the understanding of the development of MT-induced hepatotoxicity or other monomer-induced hepatotoxicity were also provided.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Matrinas , Transcriptoma , Metabolômica/métodos , Fígado/metabolismo , Glutationa/metabolismo , Esteroides/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo
20.
Protein Sci ; 31(12): e4499, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335585

RESUMO

As a key regulator for hormone activity, human aldo-keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone-dependent or independent malignancies. It is a promising target for treating castration-resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000-fold anti-AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end-point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely "Inward" and "Outward," of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an "Inward" to an "Outward" state. Further 3D-QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound's activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next-generation AKR1C3 inhibitors with enhanced efficacy and reduced "off-target" effect for CRPC therapy.


Assuntos
Hidroxiprostaglandina Desidrogenases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Benzoatos/química , Simulação por Computador , Isoformas de Proteínas , Hormônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...